New More Effective Antimicrobials Might Rise From Old

Findings could have major impact in struggle against evolving drug resistance

By tinkering with their chemical structures, researchers at the University of California, San Diego School of Medicine have essentially re-invented a class of popular antimicrobial drugs, restoring and in some cases, expanding or improving, their effectiveness against drug-resistant pathogens in animal models.

Writing in the October 7 Early Edition of PNAS, Lars Eckmann, MD, professor of medicine, and colleagues … Read the full story from the UCSD Newsroom


Dr. Lars EckmannLars Eckmann, MD, professor of medicine and a researcher in the Division of Gastroenterology, is senior investigator in the study.

Eckmann directs the UCSD Center for Tissue Repair, Epithelial Biology and Inflammation, and Transformation (C-TREAT), a National Institutes of Health Digestive Disease Research Development Center.

In his research laboratory, he addresses the mechanisms governing infection-related intestinal disease and the host defenses against them; and the pathophysiology of intestinal inflammation.

Other Department of Medicine coauthors of the PNAS report are project scientist Yukiko Miyamoto, Dae Young Cheung, Ricardo Lozano, Eduardo R. Cobo and professor Douglas E. Berg.

Citation for the study report:

Yukiko Miyamoto, Jarosław Kalisiak, Keith Korthals, Tineke Lauwaet, Dae Young Cheung, Ricardo Lozano, Eduardo R. Cobo, Peter Upcroft, Jacqueline A. Upcroft, Douglas E. Berg, Frances D. Gillin, Valery V. Fokin, K. Barry Sharpless, and Lars Eckmann. Expanded therapeutic potential in activity space of next-generation 5-nitroimidazole antimicrobials with broad structural diversity. PNAS 2013; published ahead of print October 7, 2013, doi:10.1073/pnas.1302664110  |  Full text PDF (UCSD only)

More Information: